Managing Cover Crops in Conservation Agriculture

United States Department of Agriculture - Agricultural Research Service
National Soil Dynamics Laboratory
411 South Donahue Drive, Auburn, Alabama 36832, USA

Ted S. Kornecki, Ph.D., P.E. Agricultural Engineer

 Conservation Tillage definition: >30% of residue cover on soil surface

Important factors in conservation tillage:

- 1. Minimizing soil disruption, and
- 2. Maximizing soil coverage using cover crops

Cover Crops

 Cover crops are a vital part of conservation agriculture and they need to produce maximum biomass to provide most benefits.

Cereal Rye: 3,000 to 7,000 lbs./acre

Hairy Vetch: 4,000 to 7,000 lbs./acre, N production: 90-200 lbs. N/acre

Crimson Clover: 3,500 to 5,500 lbs./acre, N production: 150 lbs. N/acre

Sunn Hemp: 5,000 lbs./acre, N production: 120 lbs. N/acre

These crops must be <u>managed appropriately to</u> <u>prevent planting problems</u> for producers.

Benefits from cover crops:

- ✓ Reduced soil erosion
- ✓ Reduced soil compaction
- ✓ Increased soil organic carbon and nitrogen source
- ✓ Reduced weed pressure (mulch and allelopathy)
- Improving soil quality and plant growth
 - ✓ Reduced runoff
 - ✓ Reduced evaporation
 - ✓ Increased water infiltration
 - ✓ Increased available moisture
 - Providing better water utilization by plants

Increase farm profitability and soil

sustainability

Benefits from Cover Crops cont.,

Carbon (C) content in a plant: 42%*

* Brady and Weil (1999)

- For Average dry biomass of cereal rye
 = 5800 lbs./acre, the total carbon is
 2400 lbs/acre (42%)*
- Microorganisms use 1600 lbs./acre as energy source (2/3 of total C)
- Sequestered carbon: 800 lbs./acre (1/3 of total C) per year is added to the soil

From 6,000 acres in Alabama's No-till vegetable production, near 2,200 tons of Carbon from rye are sequestered each year to typically low organic carbon content in Alabama's soils.

Planting problems in High Residue Systems

Hair Pinning

Planting problems in High Residue Systems

Hair Pinning
Residue accumulation on Planter

Cover Crop Management Methods

- Incorporation
- Mowing

Benefits are lost

Burning

Chemical application

- No soil protection from rainfall energy and CO₂ emission
- Re-growth and competition for resources with cash crop
 - Toxic gases, CO₂emission, soil

hydrophobic surface due to heat

- Tall cover crops
 will interfere with
 planters, and
 environmental
 impact
- Rolling/crimping technology -> Full Benefits

Principle of rolling crimping

Crimping action injures cover crop by crashing plant's tissue thus restricting nutrients flow and causing plant death

To improve crimping effectiveness of the original design, water was added into roller's drum to increase weight of the roller/crimper

Planting problems in High Residue Systems

Hair Pinning
Residue accumulation on Planter
General Poor Stands

Relationship between rye growth stage and rolling/ crimping effectiveness 3 weeks after rolling

Ashford and Reeves, 2003

When do we terminate cover crops?

Recommended termination of rye is 3-4 weeks before planting a cash crop

Period of 3 weeks allows to effectively terminate rye mechanically using rollers above 95% and eliminate rye competition with cash crop for nutrients and water. After that period cash crop can be planted.

(Ashford and Reeves, 2003; Kornecki et al., 2006)

CSR-Three-section straight bar roller

Why are original rollers-crimpers not widely adopted in the USA?

Excessive vibration at higher speeds generated by the original roller design prevent to widely adopt this technology

New Rolling/crimping technology

Smooth roller with crimping arm; Kornecki at al. 2009 U.S. Patent # 7,604,067 B1

Cold and wet weather in spring can delay the rolling of cover crop also delaying cash crop planting which can negatively impact yield. How to effectively speed-up cover termination?

ON-OFF micro-switch

Fast acting solenoid valve

Single-section Roller Experiment

Three roller designs tested at 1.6 km/h, 3.2 km/h, and 8.0 km/h speeds to evaluate speed and roller type effects on rye termination and tractor vibrations

Developed at the USDA-ARS-National Soil Dynamics Laboratory

Long-straight bars

Elliptical bars

Smooth with crimping arm

Roller's width = 1.8 m

Vibration Measurements

Tractor's frame

Accelerometer

Roller's frame

Single-section roller: Cumulative termination rate

Tractor frame vibration

Rollers/crimpers for smaller farms

Roller/crimper for elevated beds; Kornecki, U.S. Patent #7,662,517 B1

Smooth roller with crimping arm with herbicide application system Kornecki, U.S. Patent # 7,604,067 B1

Two Stage roller/crimper, Kornecki, U.S. Patent # 7, 987, 917 B1

Amounts of Roundup used

Treatment	Roundup solution applied (gal/ac)	% Roundup amount of continuous spray	Rye termination after one week (%)
Continuous spray	14.9	100	100
Felt application every crimp	7.9	53	96
Spray every other crimp	4.3	29	96
Spray every 4 th crimp	1.9	13	98

Two-stage roller/crimper

a. Rear view

b. Side View

(Kornecki, 2011, U.S. Patent #7,987,917 B1).

Powered walk-behind roller/crimper

(a) Rear view

(b) side view close-up.

(Kornecki, 2012, U.S. Patent #8,176,991 B1).

2010 Rye cover crop termination rates

2010 Results. Volumetric Moisture Content

Roller for elevated beds

(Kornecki, 2009, U.S. Patent #7,562,517 B1).

Cullman Horticulture Research Station Auburn University

Rye

Crimson Clover

Roller for elevated beds

Sweet potato transplanter

Modified RJ one-row transplanter

- (a) sub-frame with shank was added to alleviate soil compaction;
- (b) transplanting tomatoes into a heavy rye residue cover in Cullman, Alabama

Different rolling patterns for rye

- Not rolled
- Perpendicular
- Parallel
- Diagonal (45°)

Row cleaner attachments

No row cleaner

DAWN with no coulter

DAWN row cleaner

Yetter row cleaner

DAWN Row Cleaner

Custom Residue Manager

Mounted residue manager

Residue pusher/shield

Closed residue pusher/shield

Modified pressing "ski"

(Kornecki et al., 2011, U.S. Patent Pending).

Take home Message

- When rolling/crimping of cover crop is done in an appropriate growth stage:
- 1. Cover crop produces <u>maximum biomass</u> for optimum benefits.
- 2. Crimping is effective in killing cover crop (3 weeks after rolling) without the need to use herbicides (Roundup).
- 3. <u>Termination</u> process can be <u>faster</u> with supplemental <u>application of herbicides</u>.
- 4. Newer roller design can operate at higher speeds without generating high vibration on tractor's frame while maintaining high termination rate (94%)